A comparison of conventional linear regression methods and neural networks for forecasting educational spending
نویسندگان
چکیده
This study presents an application of neural network methods for forecasting per pupil expenditures in public elementary and secondary schools in the United States. Using annual historical data from 1959 through 1990, forecasts were prepared for the period from 1991 through 1995. Forecasting models included the multivariate regression model developed by the National Center for Education Statistics for their annual Projections of Education Statistics Series, and three neural architectures: (1) recurrent backpropagation; (2) Generalized Regression; and (3) Group Method of Data Handling. Forecasts were compared for accuracy against actual values for educational spending for the period. Regarding prediction accuracy, neural network results ranged from comparable to superior with respect to the NCES model. Contrary to expectations, the most successful neural network procedure yielded its results with an even simpler linear form than the NCES model. The findings suggest the potential value of neural algorithms for strengthening econometric models as well as producing accurate forecasts. [JEL C45, C53, I21] 1999 Elsevier Science Ltd. All rights reserved.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملEstimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملForecasting Gold Price using Data Mining Techniques by Considering New Factors
Gold price forecast is of great importance. Many models were presented by researchers to forecast gold price. It seems that although different models could forecast gold price under different conditions, the new factors affecting gold price forecast have a significant importance and effect on the increase of forecast accuracy. In this paper, different factors were studied in comparison to the p...
متن کاملThe Impact of Forecasting Methods Combination for Reducing Bullwhip Effect in a Four-level Supply Chain under Variable Demand
Bullwhip effect in a supply chain, makes inefficiencies such as excess inventory and overdue orders during the chain. These problems can be reduced by appropriate predictions. Forecasting must be done in all levels of a supply chain. This research addresses the problem of optimal combination of forecasting to reduce the bullwhip effect in a four-level supply chain when demand is variable. For t...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کامل